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Noncausal smoothing filters have significant performance advantages over causal
filters for estimation of the phase of radio frequency signals. This article presents
the optimum smoothing filters for the cases where the spectral density of the carrier
phase is of the form f~%, where a = 3 is typical of oscillator noise and o« = 8/3 is
typical of phase perturbations due to propagation through charged particles, such
as solar wind. It is shown that the optimum smoothers perform approximately
5-dB better than causal filters of optimum bandwidth, and that the performance
of practical-to-implement smoothing filters is within 0.03 to 0.24 dB of the opti-
mum smoothers. Some important examples where smoothing can be used are in
the Deep Space Network Galileo Telemetry System, where the data are recorded
and processed in nonreal time; in the DSN Block V Receiver, which provides data
buffering of sufficient size to enable near-real-time smoothing; and in processing
recorded radio science data, where carrier amplitude and phase are the primary
data.

[. Introduction

The performance of deep-space communications links is often limited by the ability to estimate the
phase of the radio frequency carrier. Noncausal smoothing filters have significant performance advantages
over phase-locked loops (PLLs) or other causal filters for estimating carrier phase when the estimates can
be made in nonreal time or near-real time, rather than in real time. An important opportunity for nonreal-
time smoothing is the Deep Space Network Galileo Telemetry System, in which the data are recorded
and then processed. A second example is in radio science, where the carrier amplitude and phase, rather
than telemetry, are the primary data of interest. A potential application of near-real-time smoothing is
in the DSN Block V Receiver. This digital receiver was designed to enable storage of the data samples
for sufficient time to implement smoothing estimates of carrier phase; however, the algorithms have not
been implemented to date.

Previous work [1-3] has shown that use of noncausal smoothing filters to estimate carrier phase can
improve the phase estimation by up to a factor of 4, or 6 dB, compared with casual filters. These
works modeled the phase noise on the carrier as white velocity or white acceleration. This model was
used because it is suitable for solution by Kalman filtering [1,2] or nonlinear estimation theory [3]. One
disadvantage to this approach is that the models do not accurately represent typical phase process noise.



The white velocity and accelerations correspond to process spectral densities shaped as f~2 and f~—4,
respectively. The dominant components of typical phase noise spectra vary as f 3 for oscillator noise and
as f~8/3 for phase noise dominated by propagation through charged particles, such as solar plasma. A
second disadvantage is that implementation of the resulting smoothing filters is computationally intensive,
and practical approximations were not presented.

In the present work, a spectral domain approach is used rather than a time domain approach. The
well-known general solution [4] for minimum mean-square error, infinite delay, linear smoothing filters is
applied to the actual phase noise spectra, resulting in optimum linear smoothers. Then, several smoothers
of fixed form are evaluated by determining their optimum bandwidths, and the performances of these
simple smoothers are compared with that of the optimum smoother. It is shown that a simple rectangular
weighting-function smoother is only 0.10- to 0.24-dB worse than the optimum, for f=%/% and f~* phase
spectra, respectively. Finally, it is shown that the optimum smoother is approximately 5-dB better
than typical phased-locked loops and other causal filters, even when the bandwidths of these filters are
optimized.

[I. The Optimum Linear Estimator Using an Infinite Delay Smoothing Filter

The optimum linear estimator using an infinite delay smoothing filter is a well-known and straightfor-
ward result of Wiener theory. Following Davenport and Root [4, Chapter 11], let the phase process we
are estimating be the signal, s(t), and let n(t) be additive noise. Assume s(¢) and n(t) are independent
real-valued wide-sense stationary random processes. Then the minimum mean-square error infinite delay
smoothing filter has transfer function
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whereSs(f) and S, (f) are the spectral densities of the signal process being estimated and the additive
noise. Since S5 and S, are real-valued and even-symmetric about zero, so is H,, and so is the correspond-
ing weighting function, h,(¢). Thus, the optimum estimator is a symmetric smoothing filter; in general,
it has infinite delay.

For any linear estimator H (j2x f), with input s(¢) + n(¢), the spectral density of the estimation error
is

Se(f) = Ss(HIL = H(j2n f)I* + Su()H (527 f)|? (2)

For notational convenience, we now replace H (j2x f) with H(f). The mean-square error (for any H) can
be calculated as

g
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is the contribution due to the signal process and



is the contribution due to noise.

As an aside, we note that for the simple case of infinite delay and independent signal and noise, the
optimum result in Eq. (1) can be derived by differentiating o with respect to H.

A. The Optimum Estimator for Typical Phase Noise

Phase process noise typically is dominated by low-frequency spectral components, which vary as |f|~%,
where oo = 3 for typical oscillator noise and a & 8/3 for propagation effects due to charged particles, such
as solar plasma. For these cases, we can write

S =S (@>0) (@)

where A = 254(1) is the one-sided spectral density at 1 Hz. Now assume that the additive noise is white
receiver noise, with spectral density No/2. Then, from Eq. (1),
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B. Resulting Performance

For the optimum estimator, the noise contribution to the error is
o0
o= No [ )
0
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The contribution due to the phase process is
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1. The case of a = 3. For a = 3, corresponding to an oscillator-noise-dominated phase spectrum,
the integral in Eq. (6) evaluates to 47/3%% = 0.80613. Thus,

AN
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Note that this means that the optimum estimator is a smoother with a one-sided noise bandwidth of
0.80613(A/Ny)'/? Haz.

Equation (7) also can be integrated explicitly, and results in

The overall minimum mean-square error for f~3 phase noise is
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2. The case of a = 8/3. For oo = 8/3, the charged-particle propagation noise case, the integrals
were evaluated numerically, obtaining
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Note that, for both a = 3 and o = 8/3, the optimum estimator results in 02 = (a — 1)o2. We show in
the next section that this is not an accident.

[ll. Optimum Bandwidths for Fixed-Shape Filters

In this section, we find a simple expression for the optimum bandwidths for estimation filters of fixed
shapes. We show that the overall mean-square estimation error is proportional to the optimum bandwidth,
with the constant of proportionality depending only on «. We then present numerical results for some
interesting smoothers and causal filters, and compare their performances with that of the optimum
smoother.

A. General Solution

Let G(f) be any fixed-shape filter with unity noise bandwidth, i.e.,

/0 CleFar =1 (14)

Then the filter of the same shape with noise bandwidth b Hz has transfer function G(f/b):
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With the assumed phase process noise spectrum of slope —a and additive white noise with Ny, the
mean-square phase error is
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We write this as
02 = Nob + Ab' T (17)
where
1= [T ren-cura (18)
depends only on the shape of the filter.
Minimizing Eq. (17), the optimum bandwidth is
- <§1 ) " ffa— e (19)

The optimum bandwidth b varies as the 1/a power of the ratio of signal spectral density to noise spectral
density at 1 Hz, and depends on the filter shape through I.

At the optimum bandwidth, the process noise contribution always is 1/(«— 1) times the additive noise
contribution, i.e.,

ol (20)

and the total error is

o2 = ( a 1) Nob (21)

B. Results for Various Smoothers and Causal Filters

Table 1 presents the optimum bandwidth b, for several different smoothing filters and causal filters.
The results are normalized to Nyg = A = 1. From Eq. (19), the optimum bandwidths for other values of
Ny and A are



bo(4, No) = (%)/ b, (22)
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and the minimum mean-square error is given by Eq. (21).

Table 1 also shows the degradation in estimation of phase (loss in dB) using the various smoothers
and causal filters as compared with the optimum smoother. It is seen that the performances of two very
simple smoothers are very close to optimum; for a = 8/3, rectangular and exponential weighting-function
smoothers are only 0.10- and 0.03-dB worse than optimum. Causal filters with optimum bandwidths
typically perform 5-dB worse than the optimum smoother. The best causal filter found for both v = 3
and a = 8/3 is the second-order critically damped filter, which is 4.90- and 4.48-dB worse than optimum
for « = 3 and a = 8/3, respectively. The very simple rectangular weighting-function filter is 4.66- and
4.45-dB better than the best causal filter found, for & = 3 and a = 8/3, respectively.

Table 1. Smoothers and causal filters of fixed shape and optimum bandwidth
compared with the optimum smoother for Nog=A=1

Optimum bandwidth and loss

Case Description a=3 a=28/3
bo Loss, dB bo Loss, dB
Smoothers
1 Optimum smoother 0.80613 0 0.797 0
2 Rectangular passband 1.0 0.94 1.0 0.99
3 Rectangular weighting function 0.8513 0.24 0.816 0.10
4 Symmetric exponential weighting 0.825 0.10 0.802 0.03

Causal filters

5 Rectangular weighting function o o0 2.60 5.14
6 First-order (exponential weighting) e9) 00 2.47 4.91
7 Second-order, critically damped 2.489 4.90 2.234 4.48
8 Third-order, critically damped 2.752 5.33 2.490 4.95
9 Type III phase-locked loop [5, Egs. (6)—(8)] 2.629 5.13 2.354 4.70

IV. Implementation Considerations and Future Work

Up to this point, we have assumed that the signal (phase) process and the noise add linearly. Of
course, this is not true. In a causal estimator, such as a phase-locked loop, linearity can be approached
by using a predicted value of phase to maintain the phase error within the near-linear range of the phase
detector. A similar approach can be used with a smoother, where the smoother is used in nonreal time
to improve the estimates made by a causal filter. This works well when the causal estimator performs
well enough so the phase error estimates are near linear, i.e., when the mean-square error of the PLL is
less than approximately 0.2 rad? [3].

A Fourier transform can be used very simply to implement the rectangular weighting-function
smoother. Choosing the frequency and phase that maximize the energy of the transform will result
in the appropriate phase estimate for the center of the time interval. Degradations due to nonlinear
phase will be minimized if variations due to dynamics are modeled or tracked.



Maximization of energy should not be done over all frequencies of a fast Fourier transform, but only
over the minimum frequency range necessary to cover frequency uncertainty. This will prevent errors due
to outliers. After initial acquisition, the smoother can be updated without doing the entire transform
for each new data point. Instead, the new data point can be added, the oldest point deleted, and the
transform values for a few closely spaced frequencies updated.

Future work needs to be done to determine the threshold performance of the smoother(s) as imple-
mented. Phase-locked loops threshold when the mean-square error is approximately 0.2 rad?, which
corresponds to a loop signal-to-noise ratio (SNR) of 7 dB (linear model), with no process noise. We
expect that the smoother implemented by the Fourier transform, with tracking of the frequency and
phase, will threshold somewhere near the same mean-square error as the PLL. Since smoothers achieve
the anticipated threshold mean-square error of approximately 0.2 rad? at an SNR of 4- to 5-dB lower
than required by PLLs, we expect the threshold SNR for smoothers to be significantly better than for
PLLs. This needs to be verified.

V. Conclusions

The minimum mean-square error linear estimator for a phase process with an f~% spectrum is an

infinite delay smoothing filter (where o = 3 is typical of oscillator noise and o = 8/3 is typical of
propagation through charged particles). The optimum smoother performs 4.90- and 4.48-dB better than
the best causal filter studied for & = 3 and o = 8/3, respectively. It is very easy to implement smoothers
to perform nearly as well as optimum. In particular, a smoother with a rectangular weighting function
is only 0.24- and 0.10-dB worse than optimum for & = 3 and o = 8/3. Thus, this simple smoother will
gain 4.7 or 4.4 dB over causal filters, such as phase-locked loops, for @ = 3 and o = 8/3.
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